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Abstract

Palladium catalyzed cross-coupling reactions are described for enantiopure axially chiral vinylic bromides with
arylzinc reagents leading to new compounds with axial chirality. In addition, transfers of axial to central chirality
are described. Both reactions exhibit full retention of enantiomeric purity. © 1998 Elsevier Science Ltd. All rights
reserved.

In previous studies we have described the highly enantioselective access to brominated chirons1 in the
1,3-dioxane seriesvia a dehydrobromination reaction carried out under the influence of chiral alkoxides;
the latter reagents, which were able to select one enantiotopic proton of a prochiral methylene moiety,
were used either in excess1 or in a substoichiometric amount.2 As part of our program for the use of
these chirons in the synthesis of various chiral targets, we wish to disclose here our success in carrying
out cross-coupling reactions starting from compounds1, as well as chirality transfers from axial to central
stereogenic units. Both of these transformations can be performed without any loss of enantiomeric purity
(Scheme 1).

Our first attempts of cross-coupling reactions were based on the use of aryllithium reagents, according
to Murahashi’s method,3 which has been previously designed to avoid isomerization when applied
to configurationally defined vinylic halides. For this reason, we expected this procedure to retain the
configuration of the chiral substrates.4

Regarding aryllithium reagents (Table 1), enantiomeric excesses of the coupled products2 were as
high as those of the starting materials1, demonstrating that no racemization occurred during the cross-
coupling reaction. Nevertheless, yields were disappointing (between 29 and 77%) and in the best cases
the use of a large amount of Pd0 catalyst was needed. In order to improve the reaction and to minimize
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Scheme 1.

Table 1
Cross-coupling reactions starting from substrate (R)-15

these drawbacks, we then considered less basic organometallic derivatives. Phenylmagnesium bromide
(in the presence of 5% FeCl3)8 was then selected. While the chemical yield was excellent, this cross-
coupling reaction gave unsatisfactory results in terms of enantiomeric excess. Not only was a drop in
enantiomeric purity observed but also an inversion of the absolute configuration of the obtained material
occurred, as shown by the sign of the optical rotation. In contrast, organozinc compounds appeared to be
the reagents of choice since they gave successful transformations without any loss of enantiomeric purity.
Moreover, good turnovers of the palladium catalyst were observed,9 and side reactions were minimized.
The retention of configuration from1 to 2 was assigned by means of X-ray analyses. Single crystals were
obtained from1 (R=pPhC6H4) and from one example of compounds2 (R=pPhC6H4 and Ar=pBrC6H4).
Both products were found to have (R) configuration (Fig. 1).10

Finally, we examined the exo to endo isomerization starting from compounds2. This transformation
has special interest in our next study since it represents the key step of an axial to central transfer
of chirality. We realized this isomerization without loss of stereochemical information when using a
tBuOK/tBuOH system (Scheme 1).11

This last reaction opens up the access to a new family of chirons in the 1,3-dioxane series, which is
complementary to the parent set of axially dissymmetric compounds2.
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Fig. 1.

In conclusion, we wish to emphazise that both the cross-coupling reactions and the isomerization
processes were performed keeping the enantiomeric purities unchanged. Synthesis of various chiral
targets is under investigation, taking advantage of the reactivity of the enol ether function of chirons
3.
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